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Abstract. We consider the exact solution of a model of correlated particles, which is presented as
a system of interactingXX and Fateev–Zamolodchikov chains. This model can also be considered
as a generalization of the multiband anisotropict–J model in the case where we restrict the site
occupations to at most two electrons. The exact solution is obtained for the eigenvalues and
eigenvectors using the Bethe ansatz method.

It is well known that in the limit of a strong Coulomb repulsion,U , the traditional Hubbard
model reduces to the so-calledt–J model [1]. The strong on-site correlations limit the
site occupations to at most one electron. States with double occupation on a given site are
energetically unfavourable and can be projected out from the Hilbert space. In one dimension
this model is integrable at the supersymmetrical point [2–5]. The exact solution can also be
obtained for the extension of the supersymmetric spin-1

2 t–J model (i.e.N = 2) to the case
of an arbitrary numberN of bands, having aSU(N) symmetry [6, 7], as well as for their
anisotropic version [8, 9]. In some sense all these models can be considered as a system of
interactingXX andXXZ chains with size occupations limited to at most one electron per site
[2].

In this letter we consider a generalization of the multibandt–J model for the case where
the on-site correlations are enough strong to limit the site occupations to at most two electrons.
The exact integrable model we present can be considered as a system of interactingXX and
spin-1 Fateev–Zamolodchikov chains [10, 11].

In order to present our model let us initially consider a general model withN distinct types
of bands(α = 1, . . . , N) split into two disjoint groupsN1 andN2. Taking into account the
constraint of maximum double occupancy in a given site we can have at most one electron in
bandsα ∈ N1 and at most two electrons in bandsα ∈ N2. The states of a given site are denoted
by |α, β〉 (α 6 β, α, β = 0, 1, . . . , N), where in the caseα, β = 1, 2, . . . N these are the bands
where the electrons are located whileα = 0 orβ = 0 denotes the absence of electrons. As a
conequence of this notation the state|α, α〉 is forbidden ifα ∈ N1 and it is allowed ifα ∈ N2

or α = 0. The most general Hamiltonian with nearest-neighbour interactions, in a lattice with
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L sites and periodic boundary condition, that conserves separately the electrons in each band
can be written as

H = −
L∑
j=1

Hj,j+1

Hj,j+1 =
N∑

[α],[α′]=0

W
α1,α2,α3,α4

α′1,α
′
2,α
′
3,α
′
4
E
α1,α2|α′1,α′2
j E

α3,α4|α′3,α′4
j+1

(1)

where [α] ≡ [α′1, α
′
2, α
′
3, α
′
4] is a permutation of [α1, α2, α3, α4] which keeps the order

α1 6 α2 α′1 6 α′2 α3 6 α4 α′3 6 α′4 αi = 0, 1, 2, . . . , N.

The matrixEα,β|α
′,β ′ has all the elements zero except the element in theα, β line and theα′, β ′

column, with unit value, i.e.

Eα,β|α
′,β ′ = |αβ〉〈α′β ′|. (2)

We consider Hermitean Hamiltonians,

W
α,β,γ,δ

α′,β ′,γ ′,δ′ = Wα′β ′γ ′δ′
αβγ δ (3)

in the absence of external fields,

W
0,α,0,0
0,α,0,0 = W 0,0,0,α

0,0,0,α = 0 06 α 6 N (4)

and satisfying the chirality property

W
α,β,γ,δ

α′,β ′,γ ′,δ′(η) = Wγ,δ,α,β

γ ′,δ′,α′,β ′(−η) (5)

whereη is the asymmetry parameter. We choose the energy scale such that all single-particle
hopping couplings have a unit value,

W
0,0,0,α
0,α,0,0 = t = 1 0< α 6 N. (6)

Let us initially consider the case of a single particle on the otherwise empty chain. As a
consequence of translational invariance of the Hamiltonian (1) the eigenfunctions are the plane
waves of wavenumberk,

91 =
∑
x1

f (x1, α1)E
0,α1|0,0
x1

|0, . . . ,0〉

f (x1, α1) = eikx k = 2π

L
l (l = 0, 1, . . . , L− 1)

(7)

with energy

E = −2 cosk. (8)

In (7) |0, . . . ,0〉 is the reference state with no particles.
The eigenfunctions of the Hamiltonian (1) in the general case, where we haven particles,

9n =
∑
{Q}

∑
{x}
f (x1, α1; x2, α2; . . . ; xn, αn)E0,α1|0,0

x1
E0,α2|0,0
x2

. . . E0,αn|0,0
xn

|0. . . . ,0〉 (9)

are calculated by using a generalized nested Bethe ansatz. In (9) the first summation is over
all the permutationsQ = [Q1,Q2, . . . ,Qn] of the integers 1, 2, . . . , N , and for a given
permutation [Q] the second sum is restricted to the set 16 xQ1 6 xQ2 6 · · · 6 xQn

.
We seek the amplitudesf in each of these regions in the form of a superposition of
plane waves with wavenumberskj , j = 1, . . . , n. If we have only single occupation
(xQi
6= xQi+1, i = 1, 2, . . . , n− 1) we write the ansatz

f (x1, αQ1; x2, αQ2; . . . ; xn, αQn
) =

∑
P

A
αQ1 ...αQn
P1...Pn

n∏
j=1

exp(ikPj xQj
) (10)
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where the sum is over all permutationsP = [P1, . . . , Pn] of the integers 1, 2, . . . , n. In the
case where we have a pair at the positionxQl

= xQl+1, the ansatz is modified to

f (x1, αQ1; x2, αQ2; . . . ; xn, αQn
) =

∑
P

A
αQ1 ...αQl αQl+1 ...αQn
P1...PlPl+1...Pn

n∏
j=1

exp(ikPj xQj
) (11)

where the bar at thelth and(l + 1)th positions of the superscript indicates the pair location.
The general case with many isolated particles and pairs follows from (10) and (11). The ansatz
(10), (11) corresponding to the configurations where|xQi+1 − xQi

|〉1 satisfiesH |9〉 = E|9〉,
providing the energy and momentum are given by

E = −2
n∑
j=1

coskj P =
n∑
j=1

kj . (12)

In order to obtain the two-particle scattering matrix we consider the general amplitudes (10)
or (11) in the case where there are only two particles on two neighbouring sites. In this case
our problem is exactly equivalent to that of a model with only two species (bands). The
coefficientsA

αQ1 ...αQn
P1...Pn

arising from the different permutationQ are connected with each other
by the elements of the two-particleS-matrix:

A
...αβ...

...P1P2...
=

N∑
δ,γ=1

S
γ δ

αβ (kP1, kP2)A
...δγ ...

...P2P1...
. (13)

As a necessary condition to ensure integrability, the two-particle scattering matrix has to satisfy
the Yang–Baxter equation [12, 13]. There are two integrable models, described in terms of
two species of particles, whoseS-matrix has a factorizable form. The first of these models
is the standard Hubbard model [13], while the second one is the correlated hopping model
[14–16]. We could try to use as the fundamental building block of a generalS-matrix of our
model (1) the two-particle scattering matrix of these models. Here we consider the second
model and choose theS-matrix as in the correlated hopping model [16]†. In this case we have
the following restrictions on the parameters of the Hamiltonian (1):

W
0,α,0,β
0,α,0,β = 0, 0< α < β

W
α,β,0,0
α,β,0,0 = ε0 0< α 6 β

W
α,β,0,0
0,α,0,β = W 0,0,α,β

0,α,0,β =
√

1 + e2η 0< α < β

W
α,α,0,0
0,α,0,α = 2ε1 coshη α ∈ N2

W
0,0,α,β
α,β,0,0 = ε0 0< α 6 β

(14)

whereε0 = ±1 andε1 = ±1. The non-vanishing elements of theS-matrix are

S
αβ

αβ (k1, k2) = − sin(λ1− λ2)

sin(λ1− λ2 − iη)

S
αβ

βα(k1, k2) = −i sinhη

sin(λ1− λ2 − iη)
exp[isign(α − β)(λ1− λ2)]

Sαααα (k1, k2) = −sin[−εi(λ1− λ2)− iη]

sin(λ1− λ2 − iη)

(15)

† Unfortunately previous attempts to solve this problem by using the HubbardS-matrix was unsuccessful [17] since
the Bethe ansatz does not work in the sector where we have three or more particles. The interactions necessary
to prevent more than double ocupancy per site spoils the exact integrability. This is not the case if we use as the
fundamental building block theS-matrix of the correlated hopping model.
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where

eikj = −ε0
sin(λj + iη)

sin(λj − iη)
. (16)

To complete the proof of the Bethe ansatz (10), (11) we must consider the eigenvalue
equations in the case where there are three and four particles on the two neighbouring sites
j andj + 1. This gives us a complicated system of equations for those parameters of the
Hamiltonian (1) involving three and four particles. We have treated this system analytically
and checked our results numerically. We found the following solution for the diagonal elements
of W :

W
α,β,0,γ
α,β,0,γ = ε0(1− e2η) 0< α 6 β < γ

W
α,β,0,γ
α,β,0,γ = ε0(1− e−2η) 0< γ < α 6 β

W
α,β,0,γ
α,β,0,γ = 0 0< α < γ < β

W
α,β,0,β
α,β,0,β =

{
ε0 β ∈ N1

−ε0e2η β ∈ N2
0< α < β

W
α,β,0,α
α,β,0,α =

{
ε0 α ∈ N1

−ε0e−2η α ∈ N2
0< α < β

W
α,β,γ,δ

α,β,γ,δ = ε0(1− 2e2η) 0< α 6 β < γ 6 δ
W
α,β,γ,δ

α,β,γ,δ = −ε0e2η 0< α < γ < β < δ

W
α,β,γ,δ

α,β,γ,δ = ε0(1− 2 cosh 2η) 0< α < γ 6 δ < β

W
α,β,β,γ

α,β,β,γ =
{
ε0(1− e2η) β ∈ N1

−2ε0e2η β ∈ N2
0< α < β < γ

W
α,γ,β,γ

α,γ,β,γ =
{
ε0(1− e2η) γ ∈ N1

−2ε0 cosh 2η γ ∈ N2
0< α < β < γ

W
α,β,α,γ

α,β,α,γ =
{
ε0(1− e2η) α ∈ N1

−2ε0 cosh 2η, α ∈ N2
0< α < β < γ

W
α,β,α,β

α,β,α,β =
{

2ε0 α, β ∈ N1

−2ε0 cosh 2η α or β ∈ N2
0< α < β

W
α,α,α,β

α,α,α,β = −ε0(2e2η + e−2η) α ∈ N2 0< α < β

W
β,β,α,β

β,β,α,β = −ε0(e
2η + 2e−2η) β ∈ N2 0< α < β

W
α,α,0,α
α,α,0,α = 1

2W
α,α,α,α
α,α,α,α = −2ε0 cosh 2η α ∈ N2.

(17)

For the non-diagonal elements ofW we have

W
0,α,β,γ
α,β,0,γ = 1 0< α < β < γ

W
0,β,α,γ
α,β,0,γ = Wα,γ,0,β

0,α,β,γ = e−η 0< α < β < γ

W
0,β,α,β
α,β,0,β =

{
2 coshη β ∈ N1

0 β ∈ N2
0< α < β

W
0,α,α,β
α,β,0,α =

{
2 coshη α ∈ N1

0 α ∈ N2
0< α < β

W
0,α,α,β
α,α,0,β = Wα,β,0,β

0,α,β,β = ε1

√
1 + e−2η 0< α < β
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W
α,γ,0,β
α,β,0,γ = W 0,β,α,γ

0,α,β,γ = −ε0eη 0< α < β < γ

W
β,γ,0,α
α,β,0,γ = −ε0 0< α < β < γ

W
α,β,0,α
α,α,0,β = W 0,β,α,β

0,α,β,β = −ε0ε1

√
1 + e2η 0< α < β (18)

W
0,γ,α,β
α,β,0,γ = −1 0< α 6 β γ 6= α, β

W
α,δ,β,γ

α,β,γ,δ = Wβγαδ

αβγ δ = −ε0 0< α < β < γ < δ

W
α,γ,β,δ

α,β,γ,δ = Wγ,δ,α,β

α,γ,β,δ = Wα,δ,β,γ

β,δ,α,γ W
β,γ,α,δ

β,δ,α,γ = −ε0eη 0< α < β < γ < δ

W
α,β,α,γ

α,α,β,γ = Wα,γ,β,γ

α,β,γ,γ = Wα,β,α,γ

β,γ,α,α = Wα,γ,β,γ

γ,γ,α,β = Wβ,γ,α,β

β,β,α,γ = Wβ,γ,α,β

α,γ,β,β = Wβ,γ,α,β

α,γ,β,β W
β,γ,α,β

β,β,α,γ

= − ε0ε1

√
1 + e2η 0< α < β < γ

W
β,γ,α,β

α,β,β,γ = Wγ,β,α,β

α,β,γ,β = Wβ,γ,β,α

β,α,β,γ =
{
−2ε0 coshη β ∈ N1

0 β ∈ N2
0< α 6= β 6= γ

W
α,α,α,β

α,β,α,α = Wβ,β,α,β

α,β,β,β = −ε0 0< α < β

W
α,α,β,β

α,β,α,β = −2ε0 coshη 0< α < β

W
γ,δ,α,β

α,β,γ,δ = ε0 α, β 6= γ, δ.
The periodic boundary condition for the system on the finite lattice, with sizeL, gives us

the Bethe ansatz equations. In order to obtain these equations we must diagonalize the transfer
matrix of a related inhomogeneous vertex model with non-intersecting strings [18]. The
Bethe-ansatz equations are written in terms of the momenta of the electronskj and additional
rapidities3(i)

α :[
sin(λj + iη)

sin(λj − iη)

]L
= εn−m1−1

1

n∏
j ′=1

sin(λj − λj ′ + iε1η)

sin(λj − λj ′ − iη)

m1∏
α=1

sin(λj −3(1)
α − i

2ε1η)

sin(λj −3(1)
α + i

2ε1η)
mσ∏
α′=1

sin(3(σ)
α −3(σ)

α′ + iεσ+1η)

sin(3(σ)
α −3(σ)

α′ − iεσ η)
= εmσ−1+mσ−1

σ ε
mσ+1+mσ−1
σ+1

mσ−1∏
α′=1

sin(3(σ)
α −3(σ−1)

α + i
2εσ η)

sin(3(σ)
α −3(σ−1)

α − i
2εσ η)

×
mσ+1∏
α′=1

sin(3(σ)
α −3(σ+1)

α + i
2εσ+1η)

sin(3(σ)
α −3(σ+1)

α − i
2εσ+1η)

σ = 1, 2, . . . , N − 1 m0 = n mN = 0 3(0)
α = λα

(19)

wherenj = mj−1−mj is the number of particles of speciesj , εσ = +1 if σ ∈ N1 andεσ = −1
for σ ∈ N2. The energy of the system is given in terms of the Bethe ansatz rootsλj

E = −2
n∑
j=1

coskj = 2ε0

n∑
j=1

[
cosh 2η − sinh2 2η

cosh 2η − cos 2λj

]
. (20)

It is interesting to remark that the particular isotropic casesγ = 0, of (19), (20), whereN = 2
andε1 = −ε2 = 1, as well as for arbitraryN , butεi = 1(i = 1, . . . , N) have been obtained
in [19, 20], respectively.

In conclusion, we have studied a new integrable model which can be presented as a system
of interactingXX and Fateev–Zamolodchikov chains. The Bethe ansatz equations are derived
by means of the coordinate Bethe ansatz approach. A desirable continuation of the present
work is the investigation of the thermodynamic equilibrium properties of the model based on
the Bethe ansatz solutions (19), (20).
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